
Addressing the Accelerator Programming
Challenges in Exascale Systems

Wen-mei Hwu

Professor and Sanders-AMD Chair, ECE, NCSA

University of Illinois at Urbana-Champaign

Blue Waters Computing System
Operational at Illinois since 3/2013

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch12.5 PF
1.6 PB DRAM

$250M

49,504 CPUs -- 4,224 GPUs

Some Production Use Results
Application Description Application Speedup

NAMD
100 million atom benchmark with Langevin dynamics and

PME once every 4 steps, from launch to finish, all I/O
included

1.8

Chroma
Lattice QCD parameters: grid size of 483 x 512 running at the

physical values of the quark masses
2.4

QMCPACK
Full run Graphite 4x4x1 (256 electrons), QMC followed by

VMC
2.7

ChaNGa
Collisionless N-body stellar dynamics with multipole

expansion and hydrodynamics
2.1

AWP
Anelastic wave propagation with staggered-grid finite-

difference and realistic plastic yielding (in progress)
1.2

MLFMA

• Full-wave inverse scattering solutions on hundreds of nodes with GPU
acceleration

• Fast O(N) algorithms are foundational for
computing at scale

• Largest inverse-scattering solutions by
order-of-magnitude

50 min.
(32 threads)

10 min.
(1 GPU)

38 sec.
(4,096 threads)

7 sec.
(128 GPUs)

TX/RX

Some Lessons Learned

• Throughput computing using GPUs can result in 2-3X end-to-end
application level performance improvement
• NSF is investing in a PAID program to help science teams to move their code

into heterogeneous computing

• GPU computing has so far had narrow but deep impact in the
application space due to limited support:
• Data movement overhead and small GPU memory

• Unified memory, HBM, NVLink, and HSA-style systems help

• Low-level programming interfaces with poor performance portability

Performance-Portability: One Source for All

Levels of
Hierarchy

Recurisive
Codelet

Composition

Memory
Characteristics

Automatic Data
Placement

Resource
Sizes

Autotuning

Micro-
architecture

Algorithmic
Choice

Granularity
of Parallelism

Over-
decomposition
and Coarsening

Challenges

Solutions

Performance-Portability: One Source for All

Levels of
Hierarchy

Recursive
Codelet

Composition

Memory
Characteristics

Automatic Data
Placement

Resource
Sizes

Autotuning

Micro-
architecture

Algorithmic
Choice

Granularity
of Parallelism

Over-
decomposition
and Coarsening

Challenges

Solutions

Coarse-grain threads Fine-grain threads

Automatic
Parallelization

Thread Coarsening

Existing Approaches

Depth First Order (DFO) Scheduling

Existing Approaches

DFO Scheduling with Vectorization
(time progresses as color gets darker)

DFO and Locality

DFO and Locality

DFO and Locality

Alternative Schedule: BFO

Breadth First Order (BFO) Scheduling

Alternative Schedule: BFO

BFO with Vectorization
(time progresses as color gets darker)

OpenCL/CUDA to CPU Compilers
Basic Coarsening

(DFO)
Vectorization

Locality-aware Scheduling
(DFO vs. BFO)

AMD No No No

MCUDA Yes No No

SnuCL Yes No No

Karrenberg
& Hack

Yes Yes No

pocl Yes Yes No

Intel Yes Yes No

MxPA Yes Yes Yes

0

0.2

0.4

0.6

0.8

1

ctcp hst hw kmns lkct lmd lud mrig mriq nw pbfs pf rbfs sad sc sgm spmv tpcf geo

AMD Intel LC (no vec.) LC

Performance Results

Sp
ee

d
u

p
(n

o
rm

a
liz

ed
 t

o
 f

a
st

es
t)

Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations

Kim, et al CGO’15

Performance-Portability: One Source for All

Levels of
Hierarchy

Recursive
Codelet

Composition

Memory
Characteristics

Automatic Data
Placement

Resource
Sizes

Autotuning

Micro-
architecture

Algorithmic
Choice

Granularity
of Parallelism

Over-
decomposition
and Coarsening

Challenges

Solutions

Hierarchical Compute Organization of Devices

CPU

1. Process

2. Thread (vector-capable)

3. Vector Lane

4. Instruction-level Parallelism

GPU

1. Grid

2. Block

3. Warp

4. Thread

5. Instruction-level Parallelism

Tangram: Codelet-based Programming Model
__codelet
int sum(const Array<1,int> in) {

unsigned len = in.size();
int accum = 0;
for(unsigned i=0; i < len; ++i) {

accum += in[i];
}
return accum;

}
(a) Atomic autonomous codelet

__codelet __tag(asso_tiled)
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum(map(sum, partition(in,

p,sequence(0,tile,len),sequence(1),sequence(tile,tile,len+1))));
}

__codelet __coop __tag(kog)
int sum(const Array<1,int> in) {

__shared int tmp[coopDim()];
unsigned len = in.size();
unsigned id = coopIdx();
tmp[id] = (id < len)? in[id] : 0;
for(unsigned s=1; s<coopDim(); s *= 2) {

if(id >= s)
tmp[id] += tmp[id - s];

}
return tmp[coopDim()-1];

}
(b) Atomic cooperative codelet

(c) Compound codelet using adjacent tiling

(d) Compound codelet using strided tiling

__codelet __tag(stride_tiled)
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum(map(sum, partition(in,

p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,len+1))));
}

cb

?

pc

? ? ?

?

pd

? ? ?

ca

Tangram: Composition Example

?

?

cb

?

pc

? ? ?

?

pd

? ? ?

ca

cb

pc

ca ca ca

__syncthreads()

pc

ca ca ca

?

__syncthreads()

pc

ca ca ca

ca

Automatically
spans many
levels of
hierarchical
design space

Tangram Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

scan spmv dgemm kmeans bfs

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

(h
ig

h
er

 is
 b

et
te

r)

Fermi (Reference)

Fermi (TGM)

Kepler (Reference)

Kepler (TGM)

CPU (Reference)

CPU (TGM)

(Tangram)

(Tangram)

(Tangram)

Performance-Portability: One Source for All

Levels of
Hierarchy

Recursive
Codelet

Composition

Memory
Characteristics

Automatic Data
Placement

Resource
Sizes

Autotuning

Micro-
architecture

Algorithmic
Choice

Granularity
of Parallelism

Over-
decomposition
and Coarsening

Challenges

Solutions

Data Placement Options
CPU

 Global memory

 Caches (data tiling)

 Registers

GPU

 Global memory

 Caches (data tiling)

 Registers

+

 Scratchpad memory

 Constant memory

 Texture memory

Rule-based vs. Model-based

• Rule-based (e.g., Jang et al.)
• Heuristics on the memory access pattern

• Model-based (e.g., PORPLE)
• Create a model the memory subsystem

• Slower but more accurate

Tangram’s Rule-based Data Placement
Container

shared?
no

stride 0?

Transpose

Texture

texture?
yes

no
stride 1?

no const.
stride

no

yes yes yes

scratchpad?

Scratchpad

yes
shuffle?

Registers

yes
cache?

Global

yes

candidate for on-chip memory

yes

M
em

o
ry

 A
cc

es
s

C
h

ar
ac

te
ri

st
ic

s
M

em
o

ry
 S

ys
te

m
Fe

at
u

re
s

Performance-Portability: One Source for All

Levels of
Hierarchy

Recursive
Codelet

Composition

Memory
Characteristics

Automatic Data
Placement

Resource
Sizes

Autotuning

Micro-
architecture

Algorithmic
Choice

Granularity
of Parallelism

Over-
decomposition
and Coarsening

Challenges

Solutions

GPU Tuning: Scan Case Study

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Tuned for Fermi Tuned for Fermi Tuned for Kepler Re-optimized for Kepler

Run on Fermi Run on Kepler

Pe
rf

o
rm

an
ce

(%
 o

f
b

es
t,

 h
ig

h
er

 is
 b

et
te

r)

Architecture
Upgrade

Retune Re-optimize

Performance-Portability: One Source for All

Levels of
Hierarchy

Recursive
Codelet

Composition

Memory
Characteristics

Automatic Data
Placement

Resource
Sizes

Autotuning

Micro-
architecture

Algorithmic
Choice

Granularity
of Parallelism

Over-
decomposition
and Coarsening

Challenges

Solutions

0.3380	

0.7782	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

8.0	

9.0	

10.0	

5	 10
	

15
	

20
	

25
	

30
	

35
	

40
	

45
	

50
	

55
	

60
	

65
	

70
	

75
	

80
	

85
	

90
	

95
	

10
0	

GTX	580	(Fermi	GF110)	

K40c	(Kepler	GK110)	

GTX	980	(Maxwell	GM204)	

Frac on	of	filtered	items	

Ex
ec
u

on
	
m
e	
(m

s)
	

Scratchpad atomics performance (stream compaction)

Slide courtesy of nvidia.com

• Pronounced as diesel/ˈdiːzəl/

• Statically determining best algorithm could be difficult or infeasible
• Sometimes it is input dependent

• Even a robust compiler or an expert could select suboptimal
sequence of optimization
• A catastrophic performance loss could happen

32

Example: Intel OpenCL Vectorization for CPU

• Suboptimal heuristic for vectorization in sgemm and spmv-jds

33

2.13X↓ 1.24X↓

DySel Runtime Selects the Best Version

• Application or compiler provides multiple versions
• Typically 4-10

• Runtime performs the final selection
• Apply micro-profiling to sample the performance of each candidate

• Use a small subset of the actual workload per candidate
• Contributes to final result

• Profile candidates concurrently
• Reduces profiling overhead

• Incurs less than 8% of overhead in the worst observed case

34

Productive Profiling Mode

• Computation in profiling also contributes to the final output

35

profile

profile

compute
Version A

Version B

Output

Workload Space →

← Probational Period → ← Tenured Period →

Synchronous vs Asynchronous Scheduling

• Synchronous: Schedule the remaining workload after the best version is finalized

• Asynchronous: Schedule remaining workload eagerly in a batch using the current
best candidate

36

…

blocking

tim
e

workload profile

compute

…

tim
e

workload profile

compute

…

tim
e

workload profile

compute

(a) Sync (b) Async (bad default) (c) Async (good default)

Case Study: Data Placement for GPU

37

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

spmv-csr	 par cle	filter	

Re
la

ve
	e
xe
cu

on
	
m
e	
ov

er
	o
ra
cl
e	

(lo
w
er
	is
	b
e

er
)	

Oracle	
Sync	
Async(best	ini al	selec on)	
Async(worst	ini al	selec on)	
PORPLE	
Heuris c-based	
Worst	1.29X↓

2.29X↓

Case Study: Input-dependent Scheduling
Optimizations
• Best optimizations could be input-dependent

38

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

random	matrix	 diagonal	matrix	

Re
la

ve
	e
xe
cu

on
	
m
e	
ov
er
	o
ra
cle

	
(lo

w
er
	is
	b
e

er
)	

Oracle	

Sync	

Async(best	ini al	
selec on)	
Async(worst	ini al	
selec on)	
scalar,	DFO	

scalar,	BFO	

vector,	DFO	

vector,	BFO	

Worst	

8.63	 8.63	
8.60	

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

random	matrix	 diagonal	matrix	

Re
la

ve
	e
xe
cu

on
	
m
e	
ov

er
	o
ra
cl
e	

(lo
w
er
	is
	b
e

er
)	

Oracle	

Sync	

Async(best	ini al	
selec on)	

Async(worse	ini al	
selec on)	

Scalar	

Vector	

Worst	

4.73	 4.73	 22.73	22.73	

(a) CPU (b) GPU

Conclusion and Outlook

• Heterogeneity has become the norm for all hardware systems

• HPC community are currently seeing about 2-3x application speedup

• System architecture improvements will make heterogeneous
computing more generally applicable to large software systems
• Many vendors are contributing to these improvements

• Performance portability is critical for broad software adoption
• Unfortunately, vendors have not been interested in solving this problem.
• There is critical need for programming systems with strong support for

portability
• Performance portability involves several dimensions of technical challenges

addressed in MxPA, Tangram, and DySel and other related research systems.

Thank you!

Backup Slides

ICS Motivation

A major paradigm shift

A major paradigm shift

 In the 20th Century, we were able to understand, design, and
manufacture what we can measure
• Physical instruments and computing systems allowed us to see farther, capture

more, communicate better, understand natural processes, control artificial
processes…

A major paradigm shift

 In the 20th Century, we were able to understand, design, and
manufacture what we can measure
• Physical instruments and computing systems allowed us to see farther, capture

more, communicate better, understand natural processes, control artificial
processes…

 In the 21st Century, we are able to understand, design, and create
what we can compute
• Computational models are allowing us to see even farther, going back and

forth in time, learn better, test hypothesis that cannot be verified any other
way, create safe artificial processes

Examples of Paradigm Shift
20th Century

 Small mask patterns

 Electronic microscope and Crystallography
with computational image processing

 Anatomic imaging with computational
image processing

 Teleconference

 GPS

21st Century

 Optical proximity correction

 Computational microscope with initial
conditions from Crystallography

 Metabolic imaging sees disease before
visible anatomic change

 Tele-emersion

 Self-driving cars

Blue Waters Computing System
Operational at Illinois since 3/2013

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch12.5 PF
1.6 PB DRAM

$250M

Blue Waters Science Breakthrough Example
 Determination of the structure of the HIV

capsid at atomic-level

 Collaborative effort of experimental groups at
the U. of Pittsburgh and Vanderbilt U., and the
Schulten’s computational team at the U. of
Illinois.

 64-million-atom HIV capsid simulation of the
process through which the capsid
disassembles, releasing its genetic material

 a critical step in HIV infection and a potential
target for antiviral drugs.

Blue Waters and Titan Computing Systems
NCSA ORNL

System Attribute Blue Waters Titan

Vendors Cray/AMD/NVIDIA Cray/AMD/NVIDIA
Processors Interlagos/Kepler Interlagos/Kepler

Total Peak Performance (PF) 12.5 27.1
Total Peak Performance (CPU/GPU) 7.1/5.4 2.6/24.5

Number of CPU Chips 49,504 18,688
Number of GPU Chips 4,224 18,688

Amount of CPU Memory (TB) 1600 584

Interconnect 3D Torus 3D Torus

Amount of On-line Disk Storage (PB) 26 13.6
Sustained Disk Transfer (TB/sec) >1 0.4-0.7
Amount of Archival Storage 300 15-30
Sustained Tape Transfer (GB/sec) 100 7

Heterogeneous Computing in Blue Waters

Blue Waters contains 4,224 Cray XK7
compute nodes.

 Dual-socket Node
• One AMD Interlagos chip

• 8 core modules, 32 threads
• 156.5 GFs peak performance

• Consumes 2,504 GB of data per
second

• 32 GBs memory
• 51 GB/s bandwidth

• One NVIDIA Kepler chip
• 1.3 TFs peak performance

• Consumes 20,800 GB of data per
second

• 6 GBs GDDR5 memory
• 250 GB/sec bandwidth

CPUs: Latency Oriented Design

 High clock frequency

 Large caches
• Convert long latency memory accesses

to short latency cache accesses

 Sophisticated control
• Branch prediction for reduced branch

latency

• Data forwarding for reduced data
latency

 Powerful ALU
• Reduced operation latency

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

GPUs: Throughput Oriented Design

 Moderate clock frequency

 Small caches
• To boost memory throughput

 Simple control
• No branch prediction
• No data forwarding

 Energy efficient ALUs
• Many, long latency but heavily pipelined

for high throughput

 Require massive number of threads
to tolerate latencies

DRAM

GPU

Applications Benefit from Both CPU and GPU

 CPUs for sequential parts where
latency matters
• CPUs can be 10+X faster than GPUs

for sequential code

 GPUs for parallel parts where
throughput wins
• GPUs can be 10+X faster than CPUs

for parallel code

Motivation Backup

• Codesign among diverse areas will be required to reach exascale
• Every level of the computational stack is a potential bottleneck.

• XPACC code will need to run
efficiently and portably on next-
generation heterogeneous
platforms (CPUs, GPUs, Xeon-
Phis)

Initial Production Use Results

• NAMD
• 100 million atom benchmark with Langevin dynamics and PME once every 4 steps,

from launch to finish, all I/O included
• 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only
• 768 nodes, XK7 is 1.8X XE6

• Chroma
• Lattice QCD parameters: grid size of 483 x 512 running at the physical values of the

quark masses
• 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
• 768 nodes, XK7 is 2.4X XE6

• QMCPACK
• Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC
• 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
• 700 nodes, XK7 is 2.7X XE6

Blue Waters Science Production Applications

• Work with science teams to effectively use GPUs in their production code.
• ChaNGa – cosmological simulation, University of Washington
• AWP – earthquake simulation, Southern California Earthquake Center

• Significant speedup by tuning kernels to specific GPU characteristics
• Real-world opportunities for performance portability

Running Time (ms) Speedup
ChaNGa Baseline 1.35 2.11

Optimized 1.16
AWP Baseline 61.6 1.33

Optimized 43.3

GPU Kernel Optimizations

IBM-Illinois Cognitive Computing System Research
Center (C3SR)

Image
Understanding

Text Extraction

Human
clarification

Speech
recognition

Natural
Language
Processing

Diagram
Understanding

IR

Knowledge
Indexing

Knowledge
Inferencing

Programming Framework

Hardware Platform

Dennard Scaling of MOS Devices

 In this ideal scaling, as L scales to α*L

• VDD scales to α*VDD, C scales to α*C, i scales to α*i

• Delay = CVDD/I scales as α, f scale to 1/α

• Energy per transition = CV2 scales as α3

• Power is CV2*f and scales as 1/α2, keeping total power constant

JSSC Oct 74, pg 256

Frequency Scaled Too Fast 1993-2003

Clock Frequency (MHz)

10

100

1000

10000

85 87 89 91 93 95 97 99 01 03 05

Total Processor Power Increased
(super-scaling of frequency and chip size)

1

10

100

85 87 89 91 93 95 97 99 01 03

Post-Dennard Approaches

 Multiple core with more moderate clock frequencies

 Heavy use of vector execution

 Employ both latency-oriented and throughput-oriented cores

 Reduce data transfers over long distances

More Heterogeneity Is Coming

 Traditional DRAM is near the end of memory bandwidth and capacity
• Stacked DRAM for more memory bandwidth

• Non-volatile RAM for memory capacity

• Near memory computing for reduced power used in data movement

Performance Library

 A major qualifying factor for new computing platforms
• MKL, BLAS, CUSPARSE, Trust, FFT, OpenCV, CUDNN, etc.

• Currently redeveloped and hand-tuned for each HW type/generation

 Exa-scale HW expected to have increasing levels of heterogeneity,
parallelism, and hierarchy
• Increasing levels of memory heterogeneity and hierarchy

• Increase SIMD width and types/number of cores

 Performance library development process must keep up with the HW
evolution and diversification
• Performance portability

SCF 2016

It is not just about supercomputing

 Smart phone computing apps

 Software defined networking

 Autonomous vehicle sensor data analysis

 Cloud services for image search and management

 IoT device data analytics

 …

2003

1 core

2005

2 cores

2006

4 cores

2010

6 cores

2003

1 core

2005

2 cores

2006

4 cores

2007

many-core

2010

many-core

2010

6 cores

2012

many-core

2012

many-core

NVIDIA
Maxwell

many-core

2008

Stellarton

SoC (1 core)

CPU+FPGA

2011

APU (1st gen)

APU (2nd gen)

SoC (2 cores)

2014

APU (3rd gen)

Kaveri

2014

SoC (6 cores)

Portability Backup

Levels of GPU Programming Interfaces

Current generation CUDA, OpenCL, DirectCompute

Next generation OpenACC, HCC++, Thrust, Bolt

Simplifies data movement, kernel details and kernel launch

Same GPU execution model (but less boilerplate)

Prototype & in development X10, Chapel, Nesl, Delite,
Par4all, Tangram...

Implementation manages GPU threading and synchronization
invisibly to user

Portability- CPU vs. GPU Code Versions

 Maintaining multiple code versions is extremely expensive

 Most CUDA/OpenCL developers maintain original CPU version

 Many developers report that when they back ported the
CUDA/OpenCL algorithms to CPU, they got better performing code
• Locality, SIMD, multicore

 MxPA is designed to automate this process (John Stratton, Hee-Seok Kim,
Izzat El Hajj)

Results of thread coarsening for Parboil benchmarks(written for NVIDIA SIMT GPUs)
on AMD Radeon HD6990 (VLIW-5)

Granularity Tuning (OpenCL)

Results compiled using MulticoreWare’s SlotMaximizer

* Not a single kernel
** Results from more than one dimension coarsening

CPUs favor intra-thread locality
GPUs favor inter-thread locality

(within Work Groups)

• Reduction – CPU vs. GPU (Part 1)

…

Tree-shape
parallel reduction

CPU 2-level hierarchy GPU 4-level hierarchy

…

• Reduction – CPU vs. GPU (Part 2)

Collect from Work
Group partial
results

Mandelbrot performance with vector width

0

1

2

3

4

5

6

7

8

128 256 512 1024 2048 4096

Sp
e

e
d

u
p

Image Size

Scalar SSE AVX

Results courtesy of intel.com

• CPU Parameter Tuning

Non-portable tile sizes

58%

68%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Original version tuned for Tesla Tiling parameters retuned for
Fermi

Tiling restructured

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

(all running on Fermi GPU)

GPU Parameter Tuning

Non-portable tile sizes

58%

68%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Original version tuned for Tesla Tiling parameters retuned for
Fermi

Tiling restructured

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

(all running on Fermi GPU)

GPU Parameter Tuning

CPU Xeon Phi

C/FORTRAN

OpenMP, TBB,
Pthreads, Cilk…

CUDA, OpenCL

Multicore GPU

+ SIMD
Intrinsics

Verilog, VHDL

FPGA

CPU Xeon Phi

C/FORTRAN

OpenMP, TBB,
Pthreads, Cilk…

Multicore GPU

+ SIMD
Intrinsics

Verilog, VHDL

FPGA

CUDA, OpenCLMxPA

CPU Xeon Phi

C/FORTRAN

OpenMP, TBB,
Pthreads, Cilk…

Multicore GPU

+ SIMD
Intrinsics

Verilog, VHDL

FPGA

CUDA, OpenCLMxPA

• Locality-centric work-item scheduling

• Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations

CPU Xeon Phi

C/FORTRAN

OpenMP, TBB,
Pthreads, Cilk…

CUDA, OpenCL

Multicore GPU

+ SIMD
Intrinsics

Verilog, VHDL

FPGA

Tangram

Tangram Backup

Devices have different
architectural hierarchies

Computation Codelets

Decomposition Codelets

Programmer writes
architecture-neurtral

computations and
decomposition rules

Computation Codelets

Decomposition Codelets

Compiler maps
computations

to each level of
the hierarchy…

Computation Codelets

Decomposition Codelets

…and
decomposition
rules between

each level

DySel Backup

• Pronounced as diesel/ˈdiːzəl/

• Imply low-cost and high-efficiency
• Diesel was cheaper than regular gas, when we submitted the paper… :v

• A small but useful tool to save compiler optimization developers

88

Motivation

• Statically determining the optimal code could be default or even
infeasible
• Sometimes it is input dependent

• Even a robust compiler or an expert could select suboptimal
sequence of optimization
• A catastrophic performance loss could happen

89

Example: Intel OpenCL Vectorization for CPU

• Suboptimal heuristic for vectorization in sgemm and spmv-jds

90

2.13X↓ 1.24X↓

Relax the Constraints

• Instead of asking a compiler for an optimized version which it thought
is the best

• Ask a compiler for multiple versions which are competitive
• A typical number is around 4-10

• Let the runtime to do the final selection

91

Version Selection on Runtime

• We propose DySel for dynamic version selection on runtime

• Apply micro-profiling to sample the performance of each candidate

92

Micro-Profiling

• Profile a kernel with smaller workload
• A smaller number of work-group/thread block

• Avoid large impact of performance

• Multiple micro-profiling can be scheduled and even executed
concurrently

93

Productive Profiling Mode

• Computation in profiling also contributes to the final output

94

profile

profile

compute
Version A

Version B

Output

Sync vs Async Scheduling

• Sync
• Schedule the remaining workload after the best version is finalized

• Async
• Schedule remaining workload eagerly in a batch using the current best

candidate

95

Sync vs Async Scheduling

Productive,

Micro-Profiling Ki

Assign workgroups

to each Ki

Profiling finished? Kselect = best Ki

Apply Kselect to

compute the

remaining workload

Schedule Kdefault

for a batch of

work groups

no yes

Suggest an initial

Kdefault

K1

K2
K3

K4

K5

Kernel Version

Generator

Update Kdefault using

the best profiled

Ki so far

�

�

 �

(a) Sync (b) Async

K1

K2
K3

K4

K5

Kernel Version

Generator

Productive,

Micro- Profiling Ki

 Kselect = best Ki

Assign workgroups

to each Ki

Apply Kselect to

compute the

remaining workload

�

�

�

96

Sync vs Async Scheduling

…

blocking

tim
e

workload profile

compute

…
tim

e

workload profile

compute

…

tim
e

workload profile

compute

(a) Sync (b) Async (bad default) (c) Async (good default)

97

Things I skipped

• The two extra profiling modes

• Applicability and resource requirement of each mode

• What kind of compiler analyses needed for different modes

• Where compilers add profiling code in both CPU and GPU

• More details about DySel runtime using TBB and CUDA

98

DySel Interface

	DySelLaunchKernel(
				string	kernel_sig,						//	kernel	name	
				bool	profiling=true,				//	profiling	activation	flag	
				enum	mode=fully_async			//	profiling	mode	
);	

	DySelAddKernel(
				string	kernel_sig,															//	kernel	name	
				func_ptr	implementation,									//	kernel	implementation	
				dim3	wa_factor,																		//	work	assignment	factor		
				vector<int>	sandbox_index=	[]				//	argument	offsets	for		

																																					//	sandboxes/private	outputs		
);	

(a) Kernel Implementation Registration API

(b) Kernel Launch API

99

Case Study: Locality-centric Scheduling for
CPU OpenCL

100

• Iterate in-kernel loops first or work-item loops for OpenCL on CPU
(CGO’15) using MxPA
• Through analyzing access patterns

• It is open-source, and robust
• “3.32x over AMD, 1.71x over Intel OpenCL stacks”

Case Study: Locality-centric Scheduling for
CPU OpenCL

101

1.15X↓

Case Study: Data Placement for GPU

• Data placement optimizations are crucial for performance on GPUs (TPDS 2011 & MICRO 2014)
• Although they are not open-source, they did show the transformed results

• Suboptimal decisions due to inaccurate model or improper heuristic

102

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

spmv-csr	 par cle	filter	

Re
la

ve
	e
xe
cu

on
	
m
e	
ov

er
	o
ra
cl
e	

(lo
w
er
	is
	b
e

er
)	

Oracle	
Sync	
Async(best	ini al	selec on)	
Async(worst	ini al	selec on)	
PORPLE	
Heuris c-based	
Worst	

1.29X↓

2.29X↓

Case Study: Experts’ Mixed Optimizations

• Parboil provides multiple versions with different optimization strategies
• Optimized versions usually run better

• Some Optimizations are improper or redundant

• E.g. loop unrolling and prefetching in spmv-jds on Kepler

103

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

1.40	

1.60	

1.80	

2.00	

cutcp	 sgemm	 spmv-jds	 stencil	 GeoMean	

Re
la

ve
	e
xe
cu

on
	
m
e	
to
	o
ra
cle

	
(lo

w
er
	is
	b
e

er
)	

Oracle	 Sync	 Async(best	ini al	selec on)	 Async(worst	ini al	selec on)	 Worst	

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

1.40	

1.60	

1.80	

2.00	

cutcp	 sgemm	 spmv-jds	 stencil	 GeoMean	

Re
la

ve
	e
xe
cu

on
	
m
e	
ov
er
	o
ra
cle

	
(lo

w
er
	is
	b
e

er
)	

Oracle	 Sync	 Async(best	ini al	selec on)	 Async(worst	ini al	selec on)	 Worst	
7.74	 2.28	

(a) CPU (b) GPU

Case Study: Input-dependent Optimizations

• Best optimizations could be input-dependent

104

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

random	matrix	 diagonal	matrix	

Re
la

ve
	e
xe
cu

on
	
m
e	
ov
er
	o
ra
cle

	
(lo

w
er
	is
	b
e

er
)	

Oracle	

Sync	

Async(best	ini al	
selec on)	
Async(worst	ini al	
selec on)	
scalar,	DFO	

scalar,	BFO	

vector,	DFO	

vector,	BFO	

Worst	

8.63	 8.63	
8.60	

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

random	matrix	 diagonal	matrix	

Re
la

ve
	e
xe
cu

on
	
m
e	
ov

er
	o
ra
cl
e	

(lo
w
er
	is
	b
e

er
)	

Oracle	

Sync	

Async(best	ini al	
selec on)	

Async(worse	ini al	
selec on)	

Scalar	

Vector	

Worst	

4.73	 4.73	 22.73	22.73	

(a) CPU (b) GPU

Conclusion

• DySel can deliver high accuracy and low overhead for dynamic version
selection in data-parallel programing model
• Incur less than 8% of overhead in the worst observed case

• Using DySel is like buying an insurance…

105

MxPA Backup

Contributions

• Exploiting data locality in scheduling work-items for performance

• Real system and measurement demonstrates speedups of 3.32x and
1.71x over AMD and Intel OpenCL implementations
• 18 benchmarks from Parboil and Rodinia

• Nominated for best paper award at CGO’15

• AE certified

OpenCL Programming Model

Device

Global Memory

Compute Unit

Local Memory

Compute Unit

Local Memory

Compute Unit

Local Memory

…

Kernel

Work Group Work Group Work Group…
Work
Items

void kernel(…) {
i0;
i1;
…
ia-1;
barrier();
ia;
ia+1;
…
ib-1;

}

kernel code

immediate dependency
ii Instruction or instruction block

barrier for work-items in a work-group

wi = work-item
wg = work-group
LS = local size
GS = global size

OpenCL Execution Model

region0

region1

i1

ia-1

ia

ia+1

in-1

i0

wiLS-1 wiLS wiLS+1 wi2LS-1wi0 wi1 wiGS-1

wg0 wg1 wgGS/LS-1

How to schedule this execution
graph on a multicore CPU?

Work-group Scheduling

• Assign work-groups in whole to different cores
• Considerations: Locality, Load balance

CPU Core CPU Core CPU Core CPU Core

Region Scheduling

• Serialize barrier-separated regions

Work-item Scheduling

• How to schedule work-items within a region?
• Different approaches by different compilers

Existing Approaches

• Industry
• Intel

• AMD (Twin Peaks)

• Academia
• Karrenberg & Hack

• SnuCL

• pocl

Depth First Order (DFO) Scheduling

Existing Approaches

• Industry
• Intel

• AMD (Twin Peaks)

• Academia
• Karrenberg & Hack

• SnuCL

• pocl

DFO Scheduling with Vectorization
(time progresses as color gets darker)

Memory Access Patterns
e.g. bfs
(each thread traverses a list of
neighbors)

e.g. sgemm
(threads computing adjecent
outputs access adjacent inputs)

e.g. kmeans
(all threads loop over the same
mean values)

DFO and Locality

DFO and Locality

DFO and Locality

Alternative Schedule: BFO

Breadth First Order (BFO) Scheduling

Alternative Schedule: BFO

BFO with Vectorization
(time progresses as color gets darker)

DFO’s vs. BFO’s Impact on Locality

0

0.2

0.4

0.6

0.8

1

sgm ctcp mrig tpcf sc hw kmns hst mriq nw spmv lkct lud pf sad pbfs rbfs lmd geo

DFO BFO

L1
 d

at
a

ca
ch

e
m

is
se

s
(n

o
rm

a
liz

ed
 t

o
 w

o
rs

t)

BFO has better locality DFO has better locality

BFO has better locality for 13 benchmarks, DFO has better locality for 5 benchmarks. No schedule is always the
best.

DFO scheduling

wi0 wi1 wiLS-1

ibefore

i0

iafter

iN-1

wi0 wi1 wiLS-1

ibefore

i0

iafter

i1

iN-1

BFO scheduling

prefers BFO?

classify memory accesses
in loop

contains
loop?

No

kernel region

Yes

No

Yes

Locality Centric (LC) Scheduling

Locality Centric (LC) Scheduling

Work-item Stride

0 1 Other

Lo
o

p
 It

er
at

io
n

 S
tr

id
e 0 - DFO DFO

1 BFO - DFO

Other BFO BFO -

Classify memory accesses per loop body and tally which
schedule has greater popularity

LC’s Impact on Locality

0

0.2

0.4

0.6

0.8

1

sgm ctcp mrig tpcf sc hw kmns hst mriq nw spmv lkct lud pf sad pbfs rbfs lmd geo

DFO BFO LC

L1
 d

at
a

ca
ch

e
m

is
se

s
(n

o
rm

a
liz

ed
 t

o
 w

o
rs

t)

BFO has better locality DFO has better locality

LC captures the best of both schedules

Locality Results

0

0.2

0.4

0.6

0.8

1

sgm ctcp tpcf mrig lkct sc lmd kmns hw hst pf lud mriq nw spmv sad pbfs rbfs geo

AMD Intel LC

L1
 d

at
a

ca
ch

e
m

is
se

s
(n

o
rm

a
liz

ed
 t

o
 w

o
rs

t)

LC has best locality for most benchmarks

0

0.2

0.4

0.6

0.8

1

ctcp hst hw kmns lkct lmd lud mrig mriq nw pbfs pf rbfs sad sc sgm spmv tpcf geo

AMD Intel LC (no vec.) LC

Performance Results

Sp
ee

d
u

p
(n

o
rm

a
liz

ed
 t

o
 f

a
st

es
t)

LC (with vec.) outperforms AMD (without vec.) and Intel (with vec.) by 3.32x and 1.71x

LC (without vec.) is faster than Intel (with vec.) by 1.04x

Summary

• Proposed an alternative scheduling approach to the state-of-the-art

• Demonstrated that no schedule is always best and proposed a static
schedule selection

• Outperformed industry implementations in memory system efficiency
and performance

